Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Language
Document Type
Year range
2.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.04.12.488051

ABSTRACT

Long COVID, a type of Post-Acute Sequelae of SARS CoV-2 infection (PASC), has been associated with sustained elevated levels of immune activation and inflammation. However, the pathophysiological mechanisms that drive this inflammation remain unknown. Inflammation during acute Coronavirus Disease 2019 (COVID-19) could be exacerbated by microbial translocation (from the gut and/or lung) to the blood. Whether microbial translocation contributes to inflammation during PASC is unknown. We found higher levels of fungal translocation - measured as beta-glucan, a fungal cell wall polysaccharide - in the plasma of individuals experiencing PASC compared to those without PASC or SARS-CoV-2 negative controls. The higher beta-glucan correlated with higher levels of markers of inflammation and elevated levels of host metabolites involved in activating N-Methyl-D-aspartate receptors (such as metabolites within the tryptophan catabolism pathway) with established neuro-toxic properties. Mechanistically, beta-glucan can directly induce inflammation by binding to myeloid cells (via the Dectin-1 receptor) and activating Syk/NF-kB signaling. Using an in vitro Dectin-1/NF-kB reporter model, we found that plasma from individuals experiencing PASC induced higher NF-kB signaling compared to plasma from SARS-CoV-2 negative controls. This higher NF-kB signaling was abrogated by the Syk inhibitor Piceatannol. These data suggest a potential targetable mechanism linking fungal translocation and inflammation during PASC.


Subject(s)
Coronavirus Infections , Severe Acute Respiratory Syndrome , COVID-19 , Inflammation
3.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.01.11.426209

ABSTRACT

Beyond neutralization, antibodies elicit several innate immune functions including complement deposition (ADCD), phagocytosis (ADCP), and cytotoxicity (ADCC). These functions can be both beneficial (by clearing pathogens) and/or detrimental (by inducing inflammation). We tested the possibility that qualitative differences in SARS-CoV-2 specific antibody-mediated innate immune functions contribute to Coronavirus disease 2019 (COVID-19) severity. We found that antibodies from hospitalized COVID-19 patients elicited higher ADCD but lower ADCP compared to antibodies from non-hospitalized COVID-19 patients. Consistently, higher ADCD was associated with higher systemic inflammation during COVID-19. Our study points to qualitative, differential features of anti-SARS-CoV-2 antibodies as potential contributors to COVID-19 severity.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL